
INFORMEDQX: Informed Conflict Detection for Over-Constrained Problems

Viet-Man Le1,3, Alexander Felfernig1, Thi Ngoc Trang Tran1,4, Mathias Uta2

1 Graz University of Technology, Graz, Austria
2 Siemens Energy AG, Germany

3 University of Economics, Hue University, Hue, Vietnam
4 School of Hospitality and Tourism, Hue University, Hue, Vietnam

{vietman.le,alexander.felfernig,ttrang}@ist.tugraz.at, mathias.uta@siemens-energy.com

Abstract

Conflict detection is relevant in various application scenar-
ios, ranging from interactive decision-making to the diagnosis
of faulty knowledge bases. Conflicts can be regarded as sets
of constraints that cause an inconsistency. In many scenar-
ios (e.g., constraint-based configuration), conflicts are repeat-
edly determined for the same or similar sets of constraints.
This misses out on the valuable opportunity for leveraging
knowledge reuse and related potential performance improve-
ments, which are extremely important, specifically interac-
tive constraint-based applications. In this paper, we show how
to integrate knowledge reuse concepts into non-instructive
conflict detection. We introduce the INFORMEDQX algo-
rithm, which is a reuse-aware variant of QUICKXPLAIN.
The results of a related performance analysis with the Linux-
2.6.3.33 configuration knowledge base show significant im-
provements in terms of runtime performance compared to
QUICKXPLAIN.

Introduction
Conflict detection has many applications in constraint-based
systems (and beyond) (Junker 2004; Rossi, van Beek, and
Walsh 2006). Examples thereof are recommender systems
(Felfernig and Burke 2008), knowledge-based configuration
(Junker 2006), scheduling (Baptiste et al. 2006), and knowl-
edge base testing and debugging (Felfernig et al. 2004).
In such scenarios, the task of conflict detection is to iden-
tify minimal sets of constraints (so-called conflict sets or
conflicts) that can be interpreted as an explanation for the
given inconsistency. Often associated with conflict detection
is conflict resolution (often denotes as diagnoses), which fo-
cuses on resolving all identified conflicts so that knowledge
base consistency can be restored (Reiter 1987; de Kleer and
Williams 1987).

Especially in interactive settings, there is often a need to
identify preferred conflicts (Junker 2004; O’Sullivan et al.
2007; Walsh 2007; Rossi, Venable, and Walsh 2011), i.e.,
conflicts whose resolution could be regarded as acceptable
for a user. For example, users of a car configurator with
strong preferences regarding an upper price limit are more
inclined (in the case that a configurator cannot find a solu-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion) to accept some relaxations of technical car features be-
fore accepting to further extend the pre-defined price limit.

With an increasing size and complexity of the underly-
ing knowledge bases, there is a need to further improve
the performance of the reasoning engines as well as re-
lated algorithms for conflict detection and resolution (Jan-
nach, Schmitz, and Shchekotykhin 2015). To tackle related
scalability issues, different approaches have been developed
on-top of constraint solvers. Examples thereof are the appli-
cation of machine learning for improving constraint solver
performance (Popescu et al. 2022), algorithmic paralleliza-
tion (Jannach, Schmitz, and Shchekotykhin 2015; Gent et al.
2018; Vidal et al. 2021; Le et al. 2023), and knowledge com-
pression techniques (Cheng and Yap 2005).

On the basis of a simplified working example from the
domain of smartwatch configuration, we introduce a hy-
brid approach to conflict detection. The related algorithm
(INFORMEDQX) that helps to decide, based on the existing
historic conflict data, if an activation of conflict detection is
still needed or if a preferred conflict has already been deter-
mined in previous configuration sessions. In this context, we
focus on scenarios where the complete set of conflicts can-
not be determined ahead due to complexity reasons, i.e., we
want to reuse pre-existing conflicts and to figure out on the
algorithmic level when the activation of a conflict detection
algorithm is still needed due to the fact that further (more
preferred) conflicts exist in a given constraint set.

Conflict detection algorithms have been proposed in the
context of different knowledge representations such as con-
straint solving (Junker 2004; Shchekotykhin, Jannach, and
Schmitz 2015) and SAT solving (Liffiton and Sakallah 2008;
Marques-Silva and Previti 2014a). In this context, the terms
minimal unsatisfiable cores (MUC) or minimal unsatisfiable
subsets (MUS) are often used as synonyms for minimal con-
flict sets. In this paper, we focus on complete and optimal
conflict detection algorithms, i.e., algorithms that are able to
find a minimal conflict if one exists and at the same time find
the optimal solution with regard to a predefined optimiality
criteria.

For demonstration purposes, we show how to exploit
knowledge about existing conflicts in the context of the
QUICKXPLAIN algorithm (Junker 2004) which is a divide-
and-conquer based algorithm for the determination of pre-
ferred conflicts, i.e., conflicts that take into account pre-

defined preferences of users. QUICKXPLAIN is knowledge-
representation agnostic, i.e., applicable to different knowl-
edge representations such as constraint solving (Junker
2004), SAT solving (Marques-Silva and Previti 2014a), an-
swer set programming (ASP) (Erdem, Gelfond, and Leone
2016), and description logics (DL) (McGuinness 2007), and
does not exploit properties of a specific application domain.

Following a divide-and-conquer search regime, the under-
lying idea of QUICKXPLAIN is to divide the conflict solu-
tion space as efficiently as possible with the goal to identify
subset-minimal conflict sets (one preferred minimal conflict
at a time). QUICKXPLAIN has shown to work efficiently in
many application scenarios (Rodler 2022), however, with an
increasing size and complexity of the underlying knowledge
bases, further mechanisms are needed to assure algorithm
scalability (Vidal et al. 2021).

In this paper, we introduce a new algorithm
(INFORMEDQX) that decides on a meta-level in which con-
texts there is a need to activate QUICKXPLAIN or whether a
preferred conflict has already been determined in a previous
configuration session. Interestingly, there exist scenarios
in-between the two extreme cases that motivated the work
presented in this paper. We introduce intelligent conflict
reuse, which is specifically needed in scenarios without
complete conflict knowledge, i.e., where not all conflicts of
a knowledge base are known ahead – predetermining such
conflicts in the general case is known to be a hard problem
(Gregoire, Mazure, and Piette 2008). In such situations, we
have to find a solution for exploiting incomplete conflict
knowledge, which helps to improve the performance of
conflict detection as a whole.

The major contributions of this paper are the following:

1. We introduce an algorithm (INFORMEDQX) and corre-
sponding principles that help to make conflict search
more efficient given a setting where some parts of the
conflict space are already known.

2. On the basis of an evaluation with a real-world con-
figuration knowledge base, we show a significantly im-
proved conflict detection performance compared to the
basic QUICKXPLAIN algorithm.

3. INFORMEDQX is not limited to the application in con-
straint solving scenarios but can as well be applied in the
context of other knowledge representations such as ASP,
SAT, and DL.

Example Configuration Setting
In the context of a simplified example from the domain of
constraint-based smart watch configuration, we now intro-
duce the definitions of a configuration task (Definition 1)
and a corresponding configuration (Definition 2) (see also
(Felfernig et al. 2014)). The following discussions are based
on a constraint satisfaction problem (CSP) knowledge rep-
resentation (Rossi, van Beek, and Walsh 2006).

Definition 1 (Configuration task and Knowledge base). A
configuration task (V,C) can be defined as a CSP where
(1) V = {v1, v2 . . vn} is a set of variables with finite
domain definitions dom(vi) indicating the domain of each

CSP Representation
Domain-specific Constraints (CKB)

c0 Smartwatch = t
c1 Smartwatch ↔ Connector
c2 Smartwatch ↔ Screen
c3 Camera → Smartwatch
c4 Compass → Smartwatch
c5 Speaker → Smartwatch
c6 Connector ↔ (GPS ∨ Cellular ∨Wifi ∨Bluetooth)
c7 Screen ↔ xor(Analog,High Resolution,E-ink)
c8 Camera → High Resolution
c9 Compass → GPS
c10 ¬(Cellular ∧Analog)

User Requirements (CR)
c11 Cellular = t c16 GPS = f
c12 Bluetooth = f c17 Speaker = t
c13 Analog = t c18 Camera = t
c14 Compass = t c19 E-ink = f
c15 Wifi = t

Table 1: Configuration task constraints CKB = {c0 . . c10}
and CR = {c11 . . c19}. c0 : Smartwatch = t is a root
constraint, avoiding the derivation of empty configurations.
c7 : Screen ↔ xor(Analog,High Resolution,E-ink)
returns true, if exactly one out the three variables is true,
otherwise it returns false.

variable vi ∈ V and (2) C = CKB ∪ CR is a set of con-
straints restricting possible solutions of a configuration task.
In this context, CKB represents a set of domain-specific con-
straints and CR represents a set of user requirements. Fi-
nally, (V,CKB) is denoted as configuration knowledge base.

Given such a definition of a configuration task, we now
introduce the definition of a corresponding configuration.

Definition 2 (Configuration). A configuration (solution) S
for a given configuration task (V,C) is an assignment A =
{v1 = a1 . . vn = an}, ai ∈ dom(vi). S is valid if it is
complete (each variable in V has a value) and consistent (S
fulfills the constraints in C).

Based on these definitions, the definition of a simplified
smart watch configuration task looks like as follows (see Ex-
ample 1). A configurable Smartwatch must have at least one
type of Connector and a Screen. The Connector can be of
one or more of the types of GPS, Cellular, Wifi, and Blue-
tooth. The Screen can be either Analog, High Resolution, or
E-ink. Besides, a Smartwatch may include a Camera, a Com-
pass, and a Speaker. Furthermore, Compass requires a GPS,
Camera requires a High Resolution, and Cellular and Ana-
log exclude each other. A constraint-based representation of
these restrictions can be found in Table 1.

Example 1 (Smartwatch configuration task). A CSP-based
Smartwatch configuration task (V,C) is the following :

• V = {Smartwatch, Connector, Screen, Camera,
Compass, Speaker, GPS, Cellular, Wifi,
Bluetooth, Analog, High Resolution, E-ink}

• dom(Smartwatch) = {(t)rue, (f)alse} . . dom(E-
ink) = {(t)rue, (f)alse}

• CKB = {c0 . . c10}, CR = {c11 . . c19}.

In our example, some of the user requirements CR (see
Table 1) are inconsistent with the constraints in CKB , i.e.,
the solver is not able to find a related configuration. For in-
stance, c11 and c13 in CR are inconsistent with c10 in CKB .
Therefore, no solution can be found for this configuration
task. In such situations, we are interested in explanations as
to why no solution could be identified. Minimal conflict sets,
also denoted as minimal unsatisfiable subsets, are a means
often used to explain such inconsistent situations. In the fol-
lowing, we formally introduce the notion of a minimal con-
flict set and also introduce related preference criteria, i.e.,
criteria regarding the degree of preferredness of individual
conflict sets. In this context, we also discuss the major prop-
erties of QUICKXPLAIN (Junker 2004) which is used for
demonstration purposes throughout this paper.

Determining Preferred Minimal Conflicts
Conflict sets are constraint sets that are responsible for an
inconsistency, i.e., a situation in which no solution can be
found. With consistent(C), we express that a constraint set
C is consistent, and inconsistent(C) reflects situations where
no solution can be found for C. Definition 3 introduces the
concept of conflict set minimality on the basis of subset min-
imality (i.e., not minimal cardinality): if CS is a minimal
conflict, no proper subset of C can be a minimal conflict.

Definition 3 (Conflict set). A conflict set is a set CS ⊆ CR :
inconsistent(CS ∪ CKB). CS is minimal iff ∄CS′ : CS′ ⊂
CS.

An example of minimal conflict sets in the context of our
example configuration task is the following (see Example 2).

Example 2 (Minimal conflict sets). Given the configuration
task (V,C = CKB ∪ CR) presented in Example 1, we are
able to identify the following minimal conflict sets: CS1 =
{c11, c13}, CS2 = {c13, c18}, and CS3 = {c14, c16}. The
minimality property is fulfilled since ∄CS4 : CS4 ⊂ CS1,
∄CS5 : CS5 ⊂ CS2, and ∄CS6 : CS6 ⊂ CS3.

Preferred Minimal Conflict. To resolve inconsistencies in
interactive settings such as configuration (O’Sullivan et al.
2007; Felfernig et al. 2014), a user has to resolve conflicts
consisting of constraints that represent user requirements
(ci ∈ CR). In this context, a constraint that is of low im-
portance for the user is a preferred candidate for being part
of a conflict set.

To make the preference degree of a conflict set more trans-
parent, we introduce the following definitions of a strict total
order (Definition 4) and a corresponding preferred conflict
(Definition 5). These definitions provide a way to clearly
identify a preferred conflict set among a set of candidates
(see also (Junker 2004; Marques-Silva and Previti 2014b)).

Definition 4 (Strict total order). A strict total order < over
the constraints in CR = {c1 . . cm} is represented as ⟨c1 <
c2 <. .< cm⟩ where ∀(ci, ci+1): ci is preferred over ci+1.

On the basis of such an ordering of individual constraints
part of a conflict set, we are able to characterize the prefer-
ence degree of a conflict set on the basis of a pairwise com-
parison (see (Junker 2004)). Given a strict total order < of a

set of constraints, there exists a unique preferred conflict set
(Junker 2004).
Definition 5 (Preferred conflict). Given a strict total order
< over CR, a set X ⊆ CR is preferred over another set
Y ⊆ CR (denoted X >lex Y) iff ∃i≤k≤m : ck ∈ Y \ X
and X ∩ {c1 . . ck−1} = Y ∩ {c1 . . ck−1}. A minimal
conflict set CS is a (lexicographically) preferred conflict iff
∀CS′ ̸= CS: CS >lex CS′.

Following Definition 5, a preferred conflict in our example
configuration task is the following (see Example 3).
Example 3 (Preferred conflict). Given the minimal con-
flict sets CS1 = {c11, c13}, CS2 = {c13, c18}, CS3 =
{c14, c16}, and a corresponding total ordering of ⟨c11 <
c12 <. .< c19⟩, the preferred conflict (conflict set) can be
determined as follows:

• CS3 is preferred over CS1 (denoted as CS3 >lex CS1)
since ∃c11 ∈ CS1 \ CS3 with CS1 ∩ ∅ = CS3 ∩ ∅.

• CS3 is preferred over CS2 (denoted as CS3 >lex CS2)
since ∃c13 ∈ CS2 \CS3 with CS2 ∩{c11, c12} = CS3 ∩
{c11, c12}.

• The preferred conflict set is CS3.

In Example 3, the preferred conflict set is CS3. Follow-
ing the transitive properties of such lexicographcial order-
ings (Brewka 1989; Junker 2004), no further comparisons
are needed for CS1 and CS2.
Preference formula. Following Definition 5, we now intro-
duce a numerical evaluation function (based on bitmap in-
dexing (O’Neil 1987)) which is used in the following to nu-
merically evaluate conflict preference (see Formulae 1–3).

preference(CS) = MAX −
∑

ci∈CS

importance(ci) (1)

importance(ci) = 2|CR|−i (2)

MAX = 2|CR| − 1 (3)

The preference of a conflict set CS (preference(CS))
can be determined by evaluating the sum of the individ-
ual user preferences regarding constraints in CS (see Def-
inition 4). In this context, we apply a so-called bitmap
indexing (O’Neil 1987) following the idea of evaluating
individual constraint rankings following a binary system
(2|CR|−1, 2|CR|−2 . . 1), where |CR| denotes the CR’s
cardinality. In our working example, preference(CS1 =
{c11, c13}) = 191 assuming importance(c11) = 256 and
importance(c13) = 64. A complete evaluation of the con-
flict sets of our working example is depicted in Table 2.

The higher the sum over the importance values of con-
straints in CS, the lower the probability that CS is the pre-
ferred conflict set. In this context, MAX (see Formula 3)
refers to the least preferred conflict set including all elements
of CR with a related theoretical preference value of 0. Con-
sequently, the lower the total importance of constraints in
CS, the higher the preference for CS. The theoretical up-
per bound of preference(CS) is MAX −1 assuming that the

CR c11 c12 c13 c14 c15 c16 c17 c18 c19
preference(CSi)i 1 2 3 4 5 6 7 8 9

importance(ci) 256 128 64 32 16 8 4 2 1
CS1 × – × – – – – – – 511 - (256 + 64) = 191
CS2 – – × – – – – × – 511 - (64 + 2) = 445
CS3 – – – × – × – – – 511 - (32 + 8) = 471

Table 2: Preference values for the conflict sets CS1, CS2, and CS3 given ⟨c11 < c12 <. .< c19⟩ as the strict total ordering of
the user requirements in CR. In this setting, CS3 is regarded as preferred minimal conflict set.

Algorithm 1: QUICKXPLAIN(CR, CKB) : CS

1: if CONSISTENT(CKB ∪ CR) then
2: write(‘no conflict’)
3: return(∅)
4: else if CR = ∅ then
5: write(‘conflict detection not possible’)
6: return(∅)
7: else
8: return(QX(∅, CR, CKB))
9: end if

Algorithm 2: QX(∆, CR = {c1 . . cn}, CKB) : CS

1: if ∆ ̸= ∅ and INCONSISTENT(CKB) then
2: return(∅)
3: end if
4: if |CR| = 1 then
5: return(CR)
6: end if
7: k = ⌊n2 ⌋
8: CRa ← c1 . . ck; CRb ← ck+1 . . cn
9: ∆2 ← QX(CRb, CRa, CKB ∪ CRb)

10: ∆1 ← QX(∆2, CRb, CKB ∪∆2)
11: return(∆1 ∪∆2)

CS with the lowest importance (i.e., 1) represents a single-
ton conflict set. Finally, i (i ∈ {1 . . |CR|}) denotes the ith

constraint in CS, for example, the index of i of c11 in our
example set of requirements CR is 1.

QUICKXPLAIN. QUICKXPLAIN (Junker 2004) (see Algo-
rithms 1 and 2) is an algorithm that can be applied to deter-
mine preferred minimal conflict sets (one minimal conflict
set at a time) in a given set of constraints (in our case, CR).
In this context, CR is denoted as consideration set whereas
the second parameter represents the so-called background
knowledge, i.e., a set of constraints that is considered consis-
tent – in our case, the background knowledge is represented
by the set of domain-specific constraints CKB . QUICKX-
PLAIN divides set CR into two subsets (CRa and CRb). If
one subset (e.g., CRa) is inconsistent, then conflict detec-
tion should be applied to this subset. The other subset (CRb)
must not be further analyzed since at least one conflict exists
in CRa. This way, the consideration set CR can be reduced
by half with a single consistency check. The constraint or-
dering in CR conforms to the definition of the strict total or-
dering (see Definition 4). QUICKXPLAIN is activated if the

background knowledge CKB is inconsistent with CR (see
line 8 of Algorithm 1).

The core algorithm is implemented in the function
QX (Algorithm 2) that determines a minimal conflict set
in a divide-and-conquer fashion. An executation trace of
QUICKXPLAIN on the basis of our working example is de-
picted in Figure 1. The algorithm QX adds additional con-
straints (from CRb) to CKB as long as the resulting con-
straint set remains consistent. If it is inconsistent, then the
algorithm leaves out the remaining constraints. For example,
in the activation [3], the set CKB ∪ {c14 . . c19} is inconsis-
tent and thus, the remaining constraints ({c11 . . c13}) can
be removed.

On the other hand, if the background knowledge is con-
sistent and only one constraint remains that induces the in-
consistency, this constraint must be part of the conflict set.
For example, in the activation [9], the background knowl-
edge consists of the constraints CKB ∪{c14, c17 . . c19} and
c16 remains as a single constraint. It is clear that c16 is part
of the conflict set since CKB∪{c14, c17 . . c19} is consistent
but CKB ∪ {c14, c17 . . c19} ∪ {c16} is inconsistent.

INFORMEDQX
General idea. QUICKXPLAIN works efficiently in many
scenarios, however, it shows performance issues in the
context of large and complex knowledge bases (Vidal
et al. 2021). To tackle this challenge, we introduce IN-
FORMEDQX (as a QUICKXPLAIN variant) which exploits
known conflicts (e.g., from previous configuration sessions)
to efficiently narrow down the conflict analysis space.

This exploitation (conflict reuse) can take place in two
basic settings. First, a direct reuse (without activating QX)
is possible if a specific predetermined conflict is the pre-
ferred conflict of the user requirements CR. Second, when
some predetermined conflicts match with the constraints of
the user requirements CR but its preferred conflict is not
available yet, the currently preferred conflict of the prede-
termined conflicts should be identified. In this setting, we
can reduce the size of CR by pruning certain constraints that
would not fit well with the more preferred conflict (the con-
flict with a higher preference value as described in Formula
1). This pruned set, CP , can then be passed to QX, making
the process of finding conflicts faster.

We assume that N denotes the set of predetermined mini-
mal conflicts. It is not necessarily complete (i.e., not all con-
flicts of CR are in N), only those that have already been
identified. The determination of the preferred conflict based
on N can be formally described in the following scenarios:

[1] � = ;, CR = {c11 . . c19}, B = CKB

CRa = {c11 . . c15}, CRb = {c16 . . c19}
return({c14, c16})

[2] � = {c16 . . c19}, CR = {c11 . . c15}
B = CKB [{c16 . . c19}

CRa = {c11 . . c13}, CRb = {c14, c15}
return({c14}).

[3] � = {c14, c15}, CR = {c11 . . c13}
B = CKB [{c14 . . c19}

return(;)

[4] � = ;, CR = {c14, c15}
B = CKB [{c16 . . c19}

CRa = {c14}, CRb = {c15}
return({c14})

[5] � = {c15}, CR = {c14}
B = CKB [{c15 . . c19}

return({c14})

[6] � = {c14}, CR = {c15}
B = CKB [{c14, c16 . . c19}

return(;)

[7] � = {c14}, CR = {c16 . . c19}
B = CKB [{c14}

CRa = {c16, c17}, CRb = {c18, c19}
return({c16})

[8] � = {c18, c19}, CR = {c16, c17}
B = CKB [{c14, c18, c19}
CRa = {c16}, CRb = {c17}

return({c16})

[9] � = {c17}, CR = {c16}
B = CKB [{c14, c17 . . c19}

return({c16})

[10] � = {c16}, CR = {c17}
B = CKB [{c14, c16, c18, c19}

return(;)

[11] � = {c16}, CR = {c18, c19}
B = CKB [{c14, c16}

return(;)

Figure 4: QX execution trace for CR = {c11 . . c19} and B = CKB . Underlined Bs denote QX consistency checks. For example, in the activation [2] of the QX
function, the consistency check activated is B = CKB [{c14 . . c16}.

3

Figure 1: QX execution trace for CR = {c11 . . c19} and B = CKB . Underlined Bs denote QX consistency checks. For
example, in the activation [2] of the QX function, the consistency check activated is B = CKB ∪ {c16 . . c19}.

1. Scenario 1 - If there are no conflicts in N or if none of
the conflicts in N match the constraints of CR, then the
original QUICKXPLAIN (QX) algorithm must be used.

2. Scenario 2 - If there are conflicts in N that belong to CR,
then the currently preferred conflict Ncp out of these con-
flicts can be determined. Additionally, we can check if
there are any conflicts in CR that are even more preferred
than Ncp. If so, there are two possible sub-scenarios:

(a) Scenario 2.1 - There do not exist any more pre-
ferred conflicts: We do not need to activate QX,
i.e., the currently preferred conflict is the preferred
conflict. For instance, given CR = {c11 . . c19},
N = {N1 = {c11, c13}, N2 = {c13, c18}, N3 =
{c14, c16}}, Ncp = {c14, c16} (see Example 3), and
no conflicts in CR that are more preferred over Ncp,
Ncp then becomes the preferred conflict of CR and the
activation of QX is not needed (see Figrue 2).

N3

c11 c12 c13 c14 c15CR = { }

N1

N2

c16 c17 c18 c19

Figure 2: An illustration of the Scenario 2.1 with CR =
{c11 . . c19}, and N = {N1 = {c11, c13}, N2 =
{c13, c18}, N3 = {c14, c16}}. In this case, N3 will be the
currently preferred conflict Ncp, as well as the preferred con-
flict of CR.

(b) Scenario 2.2 - There exists at least one more pre-
ferred conflict: We activate QX with the pruned set
CP . Based on Definitions 4 and 5, the constraints
of CR with a lower lexicographical order than the
currently preferred conflict can be omitted. For in-
stance, given CR = {c11 . . c19}, and N = {N1 =
{c11, c13}, N2 = {c13, c18}}, the currently preferred
conflict set is Ncp = {c13, c18}, the pruned set of CR

should be CP = {c13 . . c19}. The reason is that
the constraints {c11, c12} cannot be part of the more
preferred conflict and therefore are omitted. Conse-
quently, QX is activated with CP , whose size is much
smaller than this of the original set CR (see Figure 3).

c11 c12 c13 c14 c15CR = { }

Ncp

c16 c17 c18 c19
can be omitted

CP

Figure 3: An illustration of the Scenario 2.2 with CR =
{c11 . . c19}, and N = {N1 = {c11, c13}, N2 =
{c13, c18}}. In this case, Ncp = {c13, c18} and CP =
{c13 . . c19}.

Construction of N . Identifying a Ncp out of N is an ex-
pensive computational task. To tackle this issue, N is con-
structed on the basis of the Binary Decision Diagram (BDD)
(Cheng and Yap 2005). In this context, the approach requires
an offline process where a BDD is built to compress all iden-
tified conflict sets.
INFORMEDQX algorithm. The INFORMEDQX algorithm
(see Algorithm 3) comes into play when the existing back-
ground knowledge CKB is inconsistent with CR. The initial
step of Algorithm 3 identifies the currently preferred conflict
Ncp from the set N (line 1). The FINDPREFERREDCON-
FLICT function determines this preferred conflict based on
Definition 5 and Formula 1. Initially, this function extracts
from N all the conflict sets associated with CR utilizing
the findAll operation of the BDD diagram (Cheng and Yap
2005). It then calculates the preferences for each of these
identified conflict sets. Eventually, the function returns the
conflict set with the highest preference value. Moreover, if
N is empty, the conflict extraction process from N is ig-
nored, and the function returns an empty set. Additionally, if
no conflicts of CR are present in N , the function returns an
empty set.

Algorithm 3: INFORMEDQX(CR, CKB , N) : CS

1: Ncp ← FINDPREFERREDCONFLICT(N,CR)
2: if Ncp = ∅ then
3: return(QX(∅, CR, CKB))
4: else
5: CP ← PRUNE(CR, Ncp)

{begin - examination for a further preferred conflict}
6: prev c← ∅
7: for all c ∈ Ncp do
8: idx c← INDEX(c, CP)
9: C ′

P ← prev c∪(CP \{CP [i] : ∀i ∈ [0 . . idx c]})
10: if INCONSISTENT(CKB ∪ C ′

P) then
11: return(QX(∅, C ′

P , CKB))
12: end if
13: prev c← prev c ∪ c
14: end for

{end - examination for a further preferred conflict}
15: return(Ncp)
16: end if

loop c ∈ Ncp C′
P INCONSISTENT(CKB ∪ C′

P)
1 c14 {c15 . . c19} false
2 c16 {c14, c17 . . c19} false

Table 3: An illustration of lines 6 – 14 in Algorithm 3 for
checking whether there exists further conflicts in CP =
{c14 . . c19}, where Ncp = {c14, c16}.

If Ncp = ∅, i.e., N is empty or no conflicts of CR stay in
N (line 2), then the traditional QUICKXPLAIN is activated
for CR (line 3). Otherwise, in line with Scenario 2.2, cer-
tain unnecessary constraints in CR, which will not be part
of the more preferred conflict than the currently preferred
conflict Ncp, are omitted (line 5). After pruning CR, the al-
gorithm examines whether there exist further preferred con-
flicts in the pruned set CP (lines 6 – 14). This is addressed
by evaluating if the inconsistency of CP with CKB remains
unchanged even when removing a constraint c ∈ Ncp from
CP (lines 9 – 10). In our approach, for each c ∈ Ncp, not
only c itself is removed, but also constraints not present in
Ncp yet confirmed as consistent with CKB in the previous
checks (line 9). For instance, since C ′

P = {c15 . . c19} is
consistent with CKB (see loop 1 in Table 3), i.e., no conflict
between c15 and other constraints in C ′

P , c15 (besides c16)
is be omitted from CP in the next iteration (see loop 2 in
Table 3). Besides, c14 remains untouched because it belongs
to Ncp = {c14, c16}.

During the examination, if a constraint c ∈ Ncp satis-
fies the check (line 10), the algorithm triggers QX for the
current constructed subset C ′

P (line 11). Should the exam-
ination fail for all constraints of the conflict Ncp, the algo-
rithm returns Ncp without activating QX (line 15). In other
words, Ncp represents the preferred conflict of CR. Figure
4 depicts the INFORMEDQX execution trace for our work-
ing example, highlighting the reduction in the number of re-
quired consistency checks to 6, in contrast to the 9 checks in
QUICKXPLAIN (as shown in Figure 1).

method best case worst case
IQX m+ 1 2c× log2(

n
c) + 2c+m

QX log2(
n
c) + 2c 2c× log2(

n
c) + 2c

Table 4: The complexity of INFORMEDQX (IQX) and
QUICKXPLAIN (QX).

Analysis of INFORMEDQX
We will now delve into a theoretical analysis of IN-
FORMEDQX and proceed to evaluate its performance in
comparison with QUICKXPLAIN (Junker 2004).

QUICKXPLAIN Complexity. The worst-case complex-
ity of QX in terms of the number of needed consistency
checks for determining one minimal unsatisfiable subset CS
is 2c × log2(

n
c) + 2c, where c is the size of the minimal

conflict set, n is the number of constraints in CR, and 2c
represents the branching factor and the number of leaf-node
consistency checks (Junker 2004). The best-case complex-
ity is log2(

n
c) + 2c. In the worst case, each faulty element

is located in a different path of the search tree. The factor
log2(

n
c) represents the depth of a path of the QX search tree.

Under the best circumstance, every constraint belonging to
a conflict is included in a single path of the search tree.

INFORMEDQX Complexity. The complexity of IN-
FORMEDQX can be calculated according to the following
factors: (1) the number of needed consistency checks for de-
termining one minimal unsatisfiable subset CS and (2) the
complexity of BDD queries (m). In the worst-case, the com-
plexity emerges as the cumulative sum of these two factors,
which is 2c×log2(nc)+2c+m where m is the number of the
nodes in N ’s BDD. In this scenario, the only distinction in
the complexity of the algorithms arises from the extra factor
m that is the complexity of BDD queries in the FINDPRE-
FERREDCONFLICT. The corresponding best-case complex-
ity is m + 1. In this scenario, since the preferred conflict of
CR is already known, the complexity of INFORMEDQX is
the sum of the complexity of BDD queries in the FINDPRE-
FERREDCONFLICT and one consistency check that confirms
the preferred conflict.

INFORMEDQX Runtime Performance. We have eval-
uated the performance of INFORMEDQX compared to
QUICKXPLAIN on the basis of the Linux-2.6.33.3 config-
uration knowledge base taken from Diverso Lab’s bench-
mark1 (Heradio et al. 2022). The characteristics of this
knowledge base are the following: #features = 6,467;
#relationships = 6,322; and #cross-tree constraints = 7,650.
For this knowledge base, we used a genetic approach (Uran
and Felfernig 2018) to synthesize and collect 136 minimal
conflict sets, whose cardinality varies from 2 to 8.2

All experiments have been conducted with an Apple M1
Pro (8 cores) computer with 16-GB RAM. For evaluation
purposes, we used the CHOCO solver3 to perform consis-

1https://github.com/diverso-lab/benchmarking
2To ensure the reproducibility of the results, we used the seed

value of 141982L for the random number generator.
3choco-solver.org

[1] � = ;, CR = {c13 . . c19}, B = CKB

CRa = {c13 . . c16}, CRb = {c17 . . c19}
return({c14, c16})

[2] � = {c17 . . c19}, CR = {c13 . . c16}
B = CKB [{c17 . . c19}

CRa = {c13, c14}, CRb = {c15, c16}
return({c14, c16}).

[3] � = {c15, c16}, CR = {c13, c14}
B = CKB [{c15 . . c19}

CRa = {c13}, CRb = {c14}
return({c14})

[4] � = {c14}, CR = {c13}
B = CKB [{c14 . . c19}

return(;)

[5] � = ;, CR = {c14}
B = CKB [{c15 . . c19}

return({c14})

[6] � = {c14}, CR = {c15, c16}
B = CKB [{c14, c17 . . c19}
CRa = {c15}, CRb = {c16}

return({c16})

[7] � = {c16}, CR = {c15}
B = CKB [{c14, c16 . . c19}

return(;)

[8] � = ;, CR = {c16}
B = CKB [{c14, c17 . . c19}

return({c16})

[7] � = {c14, c16}, CR = {c17 . . c19}
B = CKB [{c14, c16}

return(;)

Figure 2: InformedQX execution trace for CR = {c11 . . c19}, B = CKB , N = {{c11, c13}, {c13, c18}}. InformedQX identifies the currently preferred conflict
Ncp = {c13, c18}, and reduces CR to CP = {c13 . . c19} (see Figure ??). The input of QX is CR = {c13 . . c19}, B = CKB .

[1] � = ;, CR = {c10 . . c16}, B = CKB

CRa = {c10 . . c13}, CRb = {c14 . . c16}
return({c13, c14})

[2] � = {c14 . . c16}, CR = {c10 . . c13}
B = CKB [{c14 . . c16}

CRa = {c10, c11}, CRb = {c12, c13}
return({c13}).

[3] � = {c12, c13}, CR = {c10, c11}
B = CKB [{c12 . . c16}

return(;)

[4] � = ;, CR = {c12, c13}
B = CKB [{c14 . . c16}

CRa = {c12}, CRb = {c13}
return({c13})

[5] � = {c13}, CR = {c12}
B = CKB [{c13 . . c16}

return(;)

[6] � = ;, CR = {c13}
B = CKB [{c14 . . c16}

return({c13})

[7] � = {c13}, CR = {c14 . . c16}
B = CKB [{c13}

CRa = {c14, c15}, CRb = {c16}
return({c14})

[8] � = {c16}, CR = {c14, c15}
B = CKB [{c13, c16}

CRa = {c14}, CRb = {c15}
return({c14})

[9] � = {c15}, CR = {c14}
B = CKB [{c13, c15, c16}

return({c14})

[10] � = {c14}, CR = {c15}
B = CKB [{c13, c14, c16}

return(;)

[11] � = {c14}, CR = {c16}
B = CKB [{c13, c14}

return(;)

Figure 3: QX execution trace for CR = {c10 . . c16} and B = CKB . Underlined Bs denote QX consistency checks. For example, in the activation [2] of the QX
function, the consistency check activated is B = CKB [{c14 . . c16}.

2

Figure 4: INFORMEDQX execution trace for CR = {c11 . . c19}, B = CKB , N = {{c11, c13}, {c13, c18}}. INFORMEDQX
identifies the currently preferred conflict Ncp = {c13, c18}, and reduces CR to CP = {c13 . . c19} (see Figure 3). The input of
QX is CR = {c13 . . c19}, B = CKB .

|CS| QUICKXPLAIN
INFORMEDQX

Ncp = ∅ Ncp ̸= ∅
Ncp = CS∧Ncp ̸= CS

2 8 / 0 / 3.58 8 / 0 / 3.64 4 / 3 / 2.57 0 / 4 / 1.97
4 12 / 0 / 7.47 12 / 0 / 7.59 10 / 3 / 6.21 0 / 4 / 4.20
8 22 / 0 / 15.92 22 / 0 / 18.91 18 / 4 / 12.60 0 / 14 / 9.07

Table 5: Number of solver calls / number of reused conflict sets / average runtime performance (in seconds) of IN-
FORMEDQX versus QUICKXPLAIN needed for determining the preferred conflict set after 20 iterations. |CS| denotes the
cardinality of the preferred conflict set. Ncp = ∅, Ncp ̸= ∅ ∧ Ncp ̸= CS, Ncp = CS indicate three following cases of Ncp

returned by FINDPREFERREDCONFLICT: (1) there are no conflicts of CR in N , (2) Ncp is not the preferred conflict CS, and (3)
Ncp is the preferred conflict. Please note that, column 2 shows zero reused conflict sets for QUICKXPLAIN since this algorithm
does not utilize any reuse mechanisms.

tency checks and JAVABDD v6.0.04 to build a BDD of iden-
tified conflict sets. Each entry in Table 5 represents number
of needed constraint solver calls (consistency checks) / num-
ber of reused conflict sets / average runtime (in seconds) for
both, INFORMEDQX and QUICKXPLAIN with a repetition
of 20 per setting.

The results from the experiment displayed in Table
5 demonstrate that INFORMEDQX performs better than
QUICKXPLAIN in all scenarios where known conflicts can
be utilized. This improvement is most noticeable when the
number of reused conflict sets is greater than zero. Al-
though INFORMEDQX may have slightly inferior perfor-
mance compared to QUICKXPLAIN when there are no con-
flicts of the users requirements CR found in N (as seen
in column 3), it significantly outperforms QUICKXPLAIN
when conflict sets are reused (as seen in the two last cases
of Ncp in columns 4 and 5). According to our experimental
findings, BDD queries exhibit notably shorter average run-
time (merely from 3 to 5 msec) compared to the total runtime
of INFORMEDQX.5

4https://github.com/com-github-javabdd/com.github.javabdd
5The dataset, the implementation of algorithms, and eval-

uation programs can be found at https://github.com/AIG-ist-
tugraz/InformedQX.

Conclusion

In this paper, we have proposed an algorithm so-called IN-
FORMEDQX as an improved version of the QUICKXPLAIN
algorithm. The proposed algorithm resolves run-time per-
formance issues in scenarios where the knowledge base is
complex and exponentially large. With our algorithm, only
conflicts that have been predetermined in previous conflict
detection sessions are taken into account. This way, the algo-
rithm helps to decrease the conflict analysis space and hence,
speeds up the conflict detection process. The evaluation re-
sults show that INFORMEDQX outperforms QUICKXPLAIN
in most of the evaluation cases.

Open topics for future research are the following: (1) per-
forming more in-depth evaluations on the basis of other in-
dustrial configuration knowledge bases, and (2) applying the
informed mechanisms in the context of diagnosis scenar-
ios (e.g., integrating informed mechanisms into FASTDIAG
(Felfernig, Schubert, and Zehentner 2012)).

Acknowledgements

This work has been funded by the FFG-funded project
PARXCEL (880657).

References
Baptiste, P.; Laborie, P.; Pape, C. L.; and Nuijten, W. 2006.
Constraint-Based Scheduling and Planning. In Rossi, F.;
van Beek, P.; and Walsh, T., eds., Handbook of Constraint
Programming, 759–797. Amsterdam, The Netherlands: El-
sevier.
Brewka, G. 1989. Preferred Subtheories: An Extended Log-
ical Framework For Default Reasoning. In IJCAI’89, 1043–
1048.
Cheng, K.; and Yap, R. 2005. Constrained Decision Dia-
grams. In AAAI’05, volume 1, 366–371.
de Kleer, J.; and Williams, B. 1987. Diagnosing multiple
faults. Artificial Intelligence, 32(1): 97–130.
Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications
of Answer Set Programming. AI Magazine, 37(3): 53–68.
Felfernig, A.; and Burke, R. 2008. Constraint-Based Rec-
ommender Systems: Technologies and Research Issues. In
10th Intl. Conference on Electronic Commerce, ICEC ’08.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781605580753.
Felfernig, A.; Friedrich, G.; Jannach, D.; and Stumptner, M.
2004. Consistency-based diagnosis of configuration knowl-
edge bases. Artificial Intelligence, 152(2): 213–234.
Felfernig, A.; Hotz, L.; Bagley, C.; and Tiihonen, J. 2014.
Knowledge-Based Configuration: From Research to Busi-
ness Cases. Morgan Kaufmann. ISBN 978-0124158177.
Felfernig, A.; Schubert, M.; and Zehentner, C. 2012. An Ef-
ficient Diagnosis Algorithm for Inconsistent Constraint Sets.
Artif. Intell. Eng. Des. Anal. Manuf., 26(1): 53–62.
Gent, I.; Miguel, I.; Nightingale, P.; McCreesh, C.; Prosser,
P.; Nooore, N.; and Unsworth, C. 2018. A Review of Litera-
ture on Parallel Constraint Solving. Theory and Practice of
Logic Programming, 18(5–6): 725–758.
Gregoire, E.; Mazure, B.; and Piette, C. 2008. On Finding
Minimally Unsatisfiable Cores of CSPs. International Jour-
nal on Artificial Intelligence Tools (IJAIT), 17(4): 745–763.
Heradio, R.; Fernandez-Amoros, D.; Galindo, J. A.; Bena-
vides, D.; and Batory, D. 2022. Uniform and scalable sam-
pling of highly configurable systems. Empirical Software
Engineering, 27(2): 44.
Jannach, D.; Schmitz, T.; and Shchekotykhin, K. 2015. Par-
allelized Hitting Set Computation for Model-Based Diagno-
sis. In AAAI, 1503–1510. AAAI Press.
Junker, U. 2004. QUICKXPLAIN: Preferred Explanations
and Relaxations for over-Constrained Problems. In Pro-
ceedings of the 19th National Conference on Artifical In-
telligence, AAAI’04, 167–172. AAAI Press.
Junker, U. 2006. Configuration. In Rossi, F.; van Beek, P.;
and Walsh, T., eds., Handbook of Constraint Programming,
837–873. Amsterdam, The Netherlands: Elsevier.
Le, V.-M.; Vidal Silva, C.; Felfernig, A.; Benavides, D.;
Galindo, J.; and Tran, T. N. T. 2023. FASTDIAGP: An Al-
gorithm for Parallelized Direct Diagnosis. Proceedings of
the AAAI Conference on Artificial Intelligence, 37(5): 6442–
6449.

Liffiton, M.; and Sakallah, K. 2008. Algorithms for Comput-
ing Minimal Unsatisfiable Subsets of Constraints. J Autom
Reasoning, 40: 1–33.
Marques-Silva, J.; and Previti, A. 2014a. On computing pre-
ferred MUSes and MCSes. In 17th International Conference
on Theory and Applications of Satisfiability Testing (SAT-
2014), 58–74.
Marques-Silva, J.; and Previti, A. 2014b. On Computing
Preferred MUSes and MCSes. In Sinz, C.; and Egly, U.,
eds., Theory and Applications of Satisfiability Testing – SAT
2014, 58–74. Cham: Springer International Publishing.
McGuinness, D. 2007. Configuration, 417–435. Cambridge
University Press, 2 edition.
O’Neil, P. 1987. Model 204 architecture and faperformance.
In International Workshop on High Performance Transac-
tion Systems, 39–59. Springer.
O’Sullivan, B.; Nanopulos, A.; Faltings, B.; and Pu, P.
2007. Representative Explanations for Over-Constrained
Problems. In 22nd AAAI Conference on Artificial Intelli-
gence, 323–328. Vancouver, Canada.
Popescu, A.; Polat-Erdeniz, S.; Felfernig, A.; Uta, M.; Atas,
M.; Le, V.; Pilsl, K.; Enzelsberger, M.; and Tran, T. 2022.
An Overview of Machine Learning Techniques in Constraint
Solving. Journal of Intelligent Information Systems, 58(1):
91–118.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1): 57–95.
Rodler, P. 2022. A Formal Proof and Simple Explanation of
the QuickXplain Algorithm. Artificial Intelligence Review,
55(8): 6185–6206.
Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. ISSN. Elsevier Science.
Rossi, F.; Venable, K.; and Walsh, T. 2011. A Short Intro-
duction to Preferences: Between Artificial Intelligence and
Social Choice. Morgan & Claypool Publishers.
Shchekotykhin, K.; Jannach, D.; and Schmitz, T. 2015.
MergeXPlain: Fast Computation of Multiple Conflicts for
Diagnosis. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence, IJCAI’15, 3221–3228. AAAI
Press. ISBN 9781577357384.
Uran, C.; and Felfernig, A. 2018. Lazy Conflict Detec-
tion with Genetic Algorithms. In Mouhoub, M.; Sadaoui,
S.; Ait Mohamed, O.; and Ali, M., eds., Recent Trends and
Future Technology in Applied Intelligence, 175–186. Cham:
Springer International Publishing.
Vidal, C.; Felfernig, A.; Galindo, J.; Atas, M.; and Bena-
vides, D. 2021. Explanations for over-constrained problems
using QuickXPlain with speculative executions. Journal of
Intelligent Information Systems, 57(3): 491–508.
Walsh, T. 2007. Representing and Reasoning with Prefer-
ences. AI Magazine, 28(4): 59–70.

