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Sustainability development goals (SDGs) are regarded as a universal call to

action with the overall objectives of planet protection, ending of poverty, and

ensuring peace and prosperity for all people. In order to achieve these objectives,

di�erent AI technologies play a major role. Specifically, recommender systems

can provide support for organizations and individuals to achieve the defined

goals. Recommender systems integrate AI technologies such asmachine learning,

explainable AI (XAI), case-based reasoning, and constraint solving in order to find

and explain user-relevant alternatives from a potentially large set of options. In

this article, we summarize the state of the art in applying recommender systems

to support the achievement of sustainability development goals. In this context,

we discuss open issues for future research.

KEYWORDS

sustainability, recommender systems, machine learning, sustainability development

goals, artificial intelligence

1. Introduction

The overall objective of the 17 sustainability development goals (SDGs—see Table 1;

e.g., no poverty and quality education) is to provide a universal call to end poverty, planet

protection, and to ensure that people enjoy peace and prosperity also with the goal to

establish a balance of social, economic, and environmental sustainability.1 Existing research

(vanWynsberghe, 2021) has already shown that Artificial Intelligence (AI) methods and

techniques can have positive as well as negative impacts ranging from efficient energy

production and distribution to negative aspects such as increasing power consumption

scenarios due to different types of large-scale machine learning efforts (Vinuesa et al., 2020).

In this article, we analyze potentials of recommender systems as a key technology to support

the mentioned SDGs.

Recommender systems can be regarded as decision support systems combining AI

technologies such as machine learning, explanations, and intelligent user interfaces with

the overall goal to improve a user’s decision quality (Bui, 2000; Falkner et al., 2011).

There are different types of recommender systems with differing applicability depending

on the underlying recommendation scenario. (1) Collaborative filtering (CF; Ekstrand et al.,

2011) follows the idea of word-of-mouth promotion where opinions of family members

and friends (the so-called “nearest neighbors”) are regarded as relevant recommendations

for a person. (2) Content-based Filtering (CBF; Pazzani and Billsus, 2007) is based on

1 https://www.undp.org/sustainable-development-goals
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TABLE 1 An overview of the United Nations Sustainable Development Goals (SDGs 1–17).

ID SDG Description

1 No poverty End poverty in all its forms everywhere

2 Zero hunger End hunger, achieve food security and improved nutrition, and promote sustainable agriculture

3 Good health and wellbeing Ensure healthy lives and promote wellbeing for all at all ages

4 Quality education Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all

5 Gender equality Achieve gender equality and empower all women and girls

6 Clean water and sanitation Ensure availability and sustainable management of water and sanitation for all

7 Affordable and clean energy Ensure access to affordable, reliable, sustainable, and modern energy for all

8 Decent work and economic growth Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent

work for all

9 Industry, innovation, and infrastructure Build resilient infrastructure, promote inclusive, and sustainable industrialization and foster innovation

10 Reduced inequalities Reduce inequality within and among countries

11 Sustainable cities and communities Make cities and human settlements inclusive, safe, resilient, and sustainable

12 Responsible consumption and

production

Ensure sustainable consumption and production patterns

13 Climate action Take urgent action to combat climate change and its impacts

14 Life below water Conserve and sustainably use the oceans, seas, and marine resources for sustainable development

15 Life on land Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat

desertification, and halt and reverse land degradation and halt biodiversity loss

16 Peace, justice, and strong institutions Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build

effective, accountable, and inclusive institutions at all levels

17 Partnerships for the goals Strengthen the means of implementation and revitalize the global partnership for sustainable development

the idea that if a person had specific preferences in the (near)

past, these preferences would more or less remain stable and can

be used for future item recommendations. (3) Knowledge-based

recommender systems (KBR; Burke, 2000) are based on the idea

of determining recommendations on the basis of a more in-depth

semantic knowledge expressed, for example, in terms of constraints

(Felfernig and Burke, 2008) or with attribute-level similarity

metrics (Chen and Pu, 2012). (4) Hybrid recommender systems

(HYB; Burke, 2002) focus on exploiting synergy effects by trying to

combine the advantages of different recommendation approaches,

for example, combining CF and CBF helps to tackle the challenges

of ramp-up problems (when, e.g., CF rating data are not available

for a specific user). (5)Group recommender systems (GRP; Felfernig

et al., 2018) focus on the determination of recommendations for

groups, i.e., not individual users. Such approaches have to identify

recommendations that help to achieve—in one way or another—a

consensus among group members.2

In this article, we focus on indicating in which ways

recommender systems can be applied to better achieve the

mentioned SDGs. With this, the major contributions of our article

are the following: (1) we provide an overview of the current state-

of-the-art in applying recommender systems for achieving the 17

SDGs. (2) on the basis of this overview, we discuss different open

issues for future research. (3) For the given SDGs, we provide

2 Further details on technical backgrounds of these recommendation

approaches will be provided in examples introduced in Section 3.

concrete working examples of how to apply recommender systems.

The contributions of this article enhance existing topic-related

overviews (Bui, 2000; Vinuesa et al., 2020; vanWynsberghe, 2021)

in terms of (1) a focus on recommender systems technologies

for sustainability, (2) the provision of concrete examples of how

recommender systems can be applied to achieve individual SDGs,

and (3) a discussion of recommender systems specific open

research issues.

Basic insights from this overview can be summarized as

follows. (1) recommender systems can already be regarded as an

important technology to support the achievement of sustainability

development goals. For each of the existing SDGs, corresponding

recommender approaches could be identified. (2) although an

application majority of CF recommenders could be observed, all of

mentioned recommendation approaches (CF, CBF, KBR, HYB, and

GRP) have sustainability-related applications. (3) for the discussed

recommender applications, two different levels of recommender

“users” exist: first, a macro-level with more abstract organizations

(e.g., countries) and second, a micro-level with concrete entities

(e.g., citizens).

The remainder of this article is organized as follows. In

Section 2, we present our methodological approach to analyze and

summarize the existing state of the art in applying recommender

systems to achieve sustainability development goals (SDGs).

Section 3 provides an overview of the 17 SDGs and a detailed

overview of the current state of the art in applying recommender

systems for achieving these goals. From this discussion of the

existing best-practices, we summarize related open issues for future
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research (see Section 4). Finally, this article is concluded within

Section 5.

2. Methodology

In this article, we focus on a comprehensive overview of the

existing state of the art in recommender systems for sustainability.

Based on the gained insights, we discuss application potentials

and related open issues for future research. Our analysis of the

state of the art is based on a literature review with the related

phases of selecting potentially relevant papers, reviewing those

papers, and a discussion of the identified papers with regard to

relevance for this overview article. Paper identification is based

on querying existing leading research platforms with topic-related

keywords. Thereafter, the identified papers have been classified

with regard to their inclusion in this overview article. In this

context, queries have been performed on (1) the research platforms

Google Scholar,3 ResearchGate,4 ScienceDirect,5 SpringerLink,6

Elsevier,7 IEEE,8, and ACM9 and (2) recommender systems related

conferences and journals including ACM Recommender Systems

(ACMRecSys), ACMUserModeling andUser-Adapted Interaction

(ACM UMAP), ACM Intelligent User Interfaces (ACM IUI),

and ACM SIGCAS/SIGCHI Computing and Sustainable Societies

(COMPASS). In this context, we used the initial search queries

(and different combinations thereof) of “recommender systems”

+ “sustainability” + “sustainability goals” + “artificial intelligence”

+ “decision support.” Using the snowballing technique (Wohlin,

2014), we analyzed further topic-relevant references starting with

the original set of identified papers. Overall, we have identified 122

relevant papers which served as a basis for writing this overview.

3. Recommender systems for
sustainability

In contrast to existing approaches to evaluate the impact of

recommender systems which are primarily focused on different

e-commerce scenarios (Jannach and Jugovac, 2019), we focus

on the impact of recommender systems in terms of achieving

sustainability development goals—Table 1 provides a short

overview of the 17UnitedNations (UN) sustainability development

goals. In the following discussions, we differentiate between (1)

a macro-level representing recommendations determined for

abstract organizations (e.g., countries, company types, and

types of study programmes) and (2) a micro-level representing

recommendations determined for concrete entities (e.g., citizens,

companies, and tourists). We exemplify the application of

recommender systems with a focus on basic recommendation

3 https://scholar.google.com/

4 https://www.researchgate.net/

5 https://www.sciencedirect.com/

6 https://link.springer.com/

7 https://www.elsevier.com/

8 https://www.ieee.org/

9 https://www.acm.org/

TABLE 2 Example: applying collaborative filtering for recommending

advantageous items (products).

Item (product) Country1 Country2 ... Countryn

Computer 1.5 2.2 ... 1.5

Tourism 1.1 2.8 ... 1.1

Wine 1.3 0.5 ... 1.2

... ... ... ... ...

Automotive 3.1 2.2 ... 4.1

Solar equipment ? ? ... 5.1

? indicates that a recommendation is needed.

approaches, i.e., the goal in this article is to discuss application

scenarios but not primarily detailed algorithmic approaches.

3.1. No poverty

The related major goal is to end poverty everywhere. Poverty

has a multitude of definitions and can be characterized in a

monetary dimension in terms of not having enough money to

maintain his/her livelihood—a related overview of AI methods to

estimate the degree of poverty in a region/country can be found

in Usmanova et al. (2022). Examples of data sources used in such

contexts are, for example, household data (e.g., demographics,

education, and food consumption), food price data, and e-

commerce data (Usmanova et al., 2022). Poverty prediction has to

be accompanied with approaches that help to counteract poverty.

For example, Che (2020) show how recommendation techniques

can be applied to identify export diversification strategies in such

a way that a country has a latent competitive advantage (when

following this strategy).

An important measure in this context is the so-called Revealed

Comparative Advantage (RCA) score (for a country θ and product

π ; see Formula 1; Balassa and Noland, 1989) which is used to

determine the importance of individual items (products) in the

export basket of a country. In this context, Eθπ is the export value

of item (product) π for country θ .

RCAScoreθπ =
Eθπ/6πEθπ

6θEθπ/6θ6πEθπ

(1)

In the line of Che (2020), recommendation services can be

provided on the basis of the RCAScore of individual items. When

applying collaborative filtering (CF), an item × RCAScore matrix

summarizes the scores of items already exported by individual

countries. CF can now be applied to predict the relevance

(RCAScore) of new items not exported by individual countries

up to now. In the example shown in Table 2, basic RCAScore

information is already available for products such as computer,

tourism, and wine.

Some countries do not export some of the products and

we would like to know for which additional products (items) it

would be good for a country to extend its assortment. In Table 2,

“?” indicates that a recommendation is needed, for example, for

country1, it would be good to focus on producing and exporting
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TABLE 3 Example: simplified portfolio elements (with costs per month).

Attributes Car House Workers Holidays Food

Domains BMW Renault None Large Medium 1 2 Yes No Flexible Restricted

Costs/income 500 350 0 2.5 k 1.5 k 2 k 3 k 150 0 600 200

solar equipment. Based on the idea of CF, the nearest neighbor of

country1 is countryn (the nearest neighbor is regarded as a country

with a similar RCAScore distribution) with a high relevance of

exporting solar equipment. In this simplified scenario, engaging

in exporting solar equipment can be regarded also as a good idea

for country1. For a detailed discussion of applying different CF

algorithms in such application contexts, we refer to Che (2020).

Furthermore, Liao et al. (2018) discuss approaches to product

diversification based on the concepts of social network analysis

where relationships between countries and their products are

analyzed for recommendation purposes.

On the level of individuals, poverty can be triggered by various

factors such as wrong investment decisions (e.g., purchasing a too

expensive car and dealing with the consequences), wrong choice of

personal education and employment (e.g., to stop visiting school

with the consequences of problems in finding a job), and issues in

handling the personal financial situation (e.g., women focusing on

childcare and without a corresponding financial provision). In the

following, we provide a simple example of applying a knowledge-

based recommendation (Felfernig et al., 2006) approach as a basic

support in investment decisions (Fano and Kurth, 2003). Table 3

provides an overview of different portfolio elements that could be

selected by the user of a recommender system.

A major criterion in portfolio recommendation is that

the overall consumed resources (car, house, holidays, and food

representing, e.g., family dinner etc.) must not exceed the

provided resources (income provided by workers per year). This

resource limitation can be expressed as shown in Formula 2

where the property workers.income represents the monthly income

of the family.

12 × (car.costs+ house.costs+ holidays.costs+ food.costs) ≤ 12

× workers.income (2)

On the basis of such a scenario, the user of a recommender

system can choose different options, for example, an expensive

car and an expensive house, and immediately understand the

consequences of such decisions. For example, with the current

yearly income, it is impossible to have both, an expensive car and

a large house. Furthermore, there also exists a scenario (portfolio)

where one worker would in principle be enough to cover all of the

estimated costs. Table 4 shows the extreme cases of a portfolio with

maximum costs p.a. (45 k) and the other extreme ofminimum costs

p.a. (20.4 k).

The presented example is a simplified variant of a knowledge-

based recommender system focusing on showing to the user the

impacts of specific investment decisions. In situations where the

defined user preferences do not allow the recommendation of a

portfolio, corresponding diagnosis techniques can help to indicate

TABLE 4 Example portfolios and associated costs p.a.

Portfolio Car House Holidays Food Total
costs
p.a.

Max BMW Large Yes Flexible 45 k

Min None Medium No Restricted 20.4 k

minimal changes in the users preferences in such a way that a

solution can be identified.10

3.2. Zero hunger

The related goal is to end hunger and to achieve improved

nutrition and food security while at the same time promoting

sustainable agriculture. In contrast to the application of

recommender systems in the context of healthy living (Tran et al.,

2018a), a major focus of sustainability in the context of achieving

zero hunger is to foster more conscious food consumption and

to support food production processes with a clear sustainability

focus (Gill et al., 2021; Bouni et al., 2022; Martini et al., 2022). A

related crop diversification (recommendation), i.e., choosing and

diversifying crops, can help governments to grow more crops in

ones own country and with this to reduce dependencies to other

countries (Gill et al., 2021). This also includes mechanisms to

effectively detect crop diseases (Omara et al., 2023).

The appropriate determination of crop factors such as

maturity date, soil suitability, and pesticide requirements becomes

increasingly important. Not least, to be able to choose the optimal

crop in the long run as well as to optimize production and

to minimize additional efforts in terms of pesticides and soil

fertilization. A simplified example of a potential application of

recommender systems in crop selection is shown in Table 5. In

this example, the question is if crop2 (the current entry) could be

relevant for region D (no corresponding experience data available).

Since average temperature and soil moisture are quite similar

to region C (the nearest neighbor—id = 5), the expected crop2
output for this region is about 83% with a recommended pesticide

usage p3. In real-world settings, further parameters are needed for

determining high-quality recommendations (Gill et al., 2021).

Food rescue organizations focus on collecting and delivering

food donations to those in need (Shi et al., 2021). In many cases,

collected food is in temporary storage at the rescue organization

where it is offered to persons in need. Collecting the food from

various local food providers is a logistic problem in the sense that

volunteers need to be identified who are willing to take over a

10 For further related details, we refer to Felfernig et al. (2006).
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TABLE 5 Example of knowledge-based (case-based) crop recommendation.

ID Name Region Pesticides Avg. temperature (cel.) Soil moisture (%) Output (%)

1 Crop1 A p1 20 30 70

2 Crop1 B p2 22 25 75

3 Crop2 E p2 22 25 75

4 Crop1 A p2 20 27 76

5 Crop2 C p3 20 27 83

Current Crop2 D ? 20 27 ?

TABLE 6 Example of volunteer (user) recommendation with

content-based filtering. Each table row represents a (simplified) user

profile, for example, the entry drinks = yes of user1 indicates that user1
prefers collection tasks with beverages included.

User Region Beverages Meat Bread Vegetables

user1 A Yes No Yes No

user2 B No No No Yes

user3 A Yes Yes Yes No

tasknew A Yes Yes No No

specific pick-up and food delivery task. Shi et al. (2021) present

a recommender system that helps to identify candidate persons

with a high probability of willing to perform a new collection and

delivery task.

A simplified example of supporting such scenarios on the

basis of content-based filtering is depicted in Table 6. In this

setting, a new collection task is defined for region A and includes

beverages and meat. Important to know is that many food rescue

organizations allow their volunteers to claim a low share of each

cartload for their own. Based on this assumption, a content-

based recommender system can identify those potential drivers

(volunteers) who might be interested in performing the collection

task. In our example, user3 can be regarded as having preferences

which are most similar to those of tasknew—consequently, user3 can

be regarded as the first candidate to be contacted.

For sure, in real-world settings, further related parameters can

play an important role in recommending volunteers. Examples

of such parameters are availability (a user might be available

only during specific time periods), fairness (all volunteers should

have near-equal chances to be contacted), and reliability (e.g., the

driver always in-time). A detailed discussion of the application of

recommender systems in a food rescue scenario is given in Shi et al.

(2021).

3.3. Good health and wellbeing

The related goal is to ensure healthy lives and promote wellbeing.

The success of public health campaigns heavily depends on the

appropriateness of health messages delivered to users (Cappella

et al., 2015). In such scenarios, recommender systems can help to

personalize message delivery given some knowledge about features

and topics of interest for a user. A simple approach can be a

topic-wise recommendation where new messages/campaigns are

forwarded to citizens in a personalized fashion. A related simplified

example is depicted in Table 7: user interests are stored in a

corresponding user profile, for example, user3 has a high interest

in healthy eating and healthy cooking. A new health campaign

should be issued and the task is to identify those users with some

basic potential interest in the related topics. The most relevant

topics of messagenew are healthy eating and healthy cooking—

in this scenario user3 and to some extent user2 have related

interests, i.e., these users should be contacted in the context of

the new campaign. As such, this is a simple example of applying

content-based filtering in the context of delivering public health

campaigns (Cappella et al., 2015). To assure that users get also

in touch with new topics, diversity-enhanced and collaborative

recommendation can be applied to increase serendipity effects

(Ravanmehr, 2021).

Another related example on the macro-level is the support

of machine learning and recommender systems in the context of

vaccine allocation and distribution where appropriate planning

and fairness aspects play a major role (Blasioli et al., 2023).

In this scenario, aspects such as population size, percentage

of individuals who have already received a previous dose,

and storage capacity for the vaccines are important factors

to be taken into account. An overview of the application of

recommender systems in the healthcare domain is provided,

for example, in Tran et al. (2018b). Important to mention,

related applications are quite diverse and not all of those can be

discussed in this article. Examples of recommender systems in

the healthcare domain range from healthy food recommendation

(Wang et al., 2021), personal wellbeing (Arévalo et al., 2022),

air pollution aware outdoor activity recommendation (Alcaraz-

Herrera et al., 2022), context-aware sleep health recommenders

(Liang, 2022), context-aware recommenders for diabetes patients

(Abu-Issa et al., 2023), activity recommenders for elderly (Herpich

et al., 2017), to the recommendation of healthcare professionals

(Singh et al., 2023).

A simplified example of an approach to recommend food

items in a healthiness-aware fashion (and—at the same time—

to take into account food preferences of the current user) is

apply collaborative filtering for selecting food items and then to

filter relevant items using a knowledge-based approach. Table 8

depicts a collection of recipes (for simplicity, we assume main

dishes) and corresponding user preferences. The current user has

already consumed schnitzel and lasagne in the past. A recommender
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TABLE 7 Example personalized message delivery in public health campaigns.

User Healthy eating Athletic sports Endurance sports Healthy cooking Sports events

user1 0.5 0.8 0.0 0.2 0.0

user2 0.5 0.1 0.6 0.5 0.8

user3 0.9 0.2 0.5 0.9 0.2

messagenew 0.9 0.1 0.5 0.9 0.0

TABLE 8 Example food item consumption with corresponding front-of-pack labels (a ..e) where a indicates high and b low nutritional values (Julia et al.,

2021).

User Schnitzele Beansa Sojab Veald Lasagnec Troutb Spaghettib Spinacha Salada

user1 x x x x x

user2 x x x x x

user3 x x

current x ? ? ? x ? ? ? ?

TABLE 9 Example group decision setting regarding the establishment of a new study program, for example, Artificial Intelligence (AI). Individual

stakeholders si give feedback on individual proposals in terms of evaluating the interest dimensions (F)easibility and (I)nterest.

Stakeholder AI AI and decision making Data science AI in software

F I F I F I F I

s1 8 6 6 8 8 4 8 8

s2 10 9 2 4 8 2 8 8

s3 7 7 8 8 4 2 8 9

s4 10 10 4 7 3 3 6 7

Avg 8.75 8 5 6.75 5.75 2.75 7.5 8

could recommend these or similar items also in the future (e.g.,

veal). However, since both selections have rather low nutritional

values (Julia et al., 2021), an alternative is to recommend salad

and spinach which has also been consumed by the nearest

neighbor user1.

The idea of such a recommender could be to create diversity

in terms of identifying items (or recipes) the current user

did not consume up to now and—at the same time—to take

into account nutritional values, i.e., to prefer items with high

nutritional values (e.g., salad or spinach). Just recommending

salad as a main dish would not be satisfactory for the user—

in this situation, we can extend our basic collaborative filtering

with a knowledge-based approach that supports the generation

of bundles taking, for example, into account upper bounds in

terms of the number of calories consumed per day (Beladev et al.,

2016).

3.4. Quality education

Ensuring inclusive and equitable quality education and

lifelong learning opportunities requires the inclusion of

modern communication technologies as well as corresponding

personalization concepts which help to tailor learning contents

in such a way that learners can have a personalized learning

experience (Klašnja-Milićević et al., 2015).

An example of applying group recommender systems in e-

learning contexts on the macro level is policy decision making

regarding the establishment of a new study program at a university.

In such a scenario, alternative study programs could be discussed

by a group of responsible stakeholders where each stakeholder can

provide related proposals him/herself and can give feedback on

the other existing proposals/ideas simply by evaluating the interest

dimensions feasibility (are the personal resources available for

teaching the new courses?) and interest (will students be interested

in enrolling in the new study program?; see Table 9). We assume

an evaluation scale [1..10] 1 indicating low and 10 indicating high

feasibility/interest.

If we assume an equal importance of the interest dimensions

feasibility and interest, theAI (Artificial Intelligence) study program

could be recommended to the stakeholders since it has the highest

average (AVG) evaluation. A more detailed discussion on the

utility-based evaluation of alternative solutions (items, products)

can be found in Felfernig et al. (2006, 2018).

On the micro-level, there exist a couple of recommendation

approaches supporting the recommendation of learning items

(Ribeiro, 2011; Klašnja-Milićević et al., 2015). On the one hand,

content-based filtering can be applied in situations where new

learning items are available for learners who are interested in a
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TABLE 10 Example dataset regarding the correctness of student answers

to test questions qi (1 = correct, 0 = incorrect answer to a question qi).

Student topic1 topic2 topic3

q1 q2 q3 q4 q5 q6

s1 1 0 1 1 1 0

s2 1 1 0 0 1 0

s3 1 0 1 0 0 0

Correct (%) 1.0 0.33 0.66 0.33 0.66 0

longterm learning experience regarding a specific topic. This is

similar to news recommendation where news gets recommended

to users with a corresponding topic-wise reading preference. In the

context of university courses, students can estimate their topic-wise

expertise by answering corresponding test questions (Stettinger

et al., 2020). For those topics with a lower knowledge level, content-

based recommendation can be used to recommend topic-specific

contents ranked on the basis of their complexity level (see Table 10).

If we assume that Table 10 is a result of a student pre-test

questionnaire, the corresponding correctness shares can be used to

rank the questions with regard to their complexity. For questions

answered incorrectly, corresponding learning contents can be

recommended, for example, by a content-based match between

question category names and corresponding content categories.

For example, student s3 did not answer any question of topic3
correctly. Consequently, contents related to questions q5 and q6
can be recommended (first, learning contents related to q5 since

this appears to be a slightly easier topic when following the

correctness criteria).

3.5. Gender equality

The underlying goal is to achieve gender equality and to

empower all women and girls. A major aspect in the context of

achieving gender equality is the concept of fairness in terms of

a gender-independent equal treatment. In recommender systems,

fairness aspects play an important role in terms of assuring

this property with regard to stakeholders (Li et al., 2023), for

example, in music streaming platforms, musicians are interested in

having their songs played and users in maximizing their positive

song experience.

We expect the availability of different metrics (criteria) that

help to analyze the degree to which fairness aspects have to be

taken into account as well as pointing out possibilities to counteract

unfair treatments (Stray et al., 2021; Wu et al., 2023). Examples

thereof are equal opportunity requiring the same share of true

positives for individual recommender system users or groups, envy-

freeness indicating to which extent individual users or groups

prefer their recommendations over the recommendations given

to other users or groups, and demographic parity indicating that

recommendations should be similar around an attribute such as

gender (Wu et al., 2023). A simple example of how to measure the

equal opportunity parity (on a scale [0..1]) of a job recommender is

provided in Formula 3.

TABLE 11 Example of stakeholder-specific evaluations of the

qualification of di�erent job applicants.

Stakeholder candidate1 candidate2 candidate3 candidate4

s1 10 5 6 7

s2 2 7 8 8

s3 3 7 7 6

s4 5 8 5 7

Avg 5.0 6.75 6.5 7.0

fairness = 1− |accurracy(male)− accurracy(female)| (3)

There are different ways of assuring fairness (Sonboli et al.,

2022) ranging from (1) the pre-processing of a dataset on

the basis of imputation, (2) the provision of fairness-aware

algorithms (e.g., on the basis of integrating fairness into machine

learning regularization terms), and (3) the post-processing of

generated recommendations (e.g., on the basis of re-ranking

recommendations). An example of assuring fairness in a group

recommendation scenario (job candidate selection) is depicted in

Table 11.

In the scenario shown in Table 11, stakeholders si are in charge

of selecting a person for a specific job. In this context, a basic group

recommender system is applied to recommend candidates to the

group (on the basis of an avg aggregation function). In this example,

candidate4 has the best overall evaluation which could make

him/her the best candidate, however, there is a strong imbalance

with regard to the evaluations of candidate1. For this reason, a

final decision should not be taken immediately, but discussions

need to be triggered regarding the contradicting evaluations of

candidate1. Fairness-awareness in this context means to pro-

actively figure out potential issues in the decision making process

in order to avoid sub-optimal decisions. An important aspect in

the context of assuring fairness is also to introduce transparency

into decision processes. For example, Tran et al. (2019) compare

different group recommender user interfaces (differing in terms

of decision process transparency) and corresponding stakeholder

behaviors in terms of trying to manipulate decision outcomes.

A related result is that transparency can help to counteract

decision manipulation and thus to reduce the probability of

sub-optimal decisions.

3.6. Clean water and sanitation

Cornerstones for the availability of clean water and sanitation

are intelligent systems supporting the planning, implementation,

and operation of corresponding technical infrastructures

(Mahmoud et al., 2013; Magalhães et al., 2019).

Water management as a whole heavily relies on knowledge

about the location-specific quality of water resources which is

highly relevant for decision makers, involved in tasks such as land

development planning. To identify relevant locations and also to

predict the development of water sources over time, recommender

systems can help to predict, for example, the pH level—for
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TABLE 12 Simplified household water consumption data as a basis for recommending changes in consumption behavior (for shower, bathtub, toilet,

and kitchen, the data describes liter p.a.).

Household Adults Children Shower Bathtub Toilet Kitchen

h1 2 2 1,000 20,000 2,000 800

h2 2 0 300 12,000 1,200 1,000

h3 2 2 4,000 30,000 2,500 1,000

related details on an example application we refer to Mahmoud

et al. (2013). Related techniques for designing relevant sanitation

concepts are also in the need of a decision support able to integrate

local decision makers (Magalhães et al., 2019).

In the context of optimizing household water consumption,

recommender systems can be applied to sensitize users in terms

of adapting, i.e., reducing their water consumption (Arsene et al.,

2023). Table 12 provides a simple example dataset representing

different households with corresponding consumption data. Our

assumption in this context is the availability of smart-meter

technologies allowing the measurement of water consumptions

with individual water devices.

In this example (Table 12), despite an equivalent number of

persons living in the household, household h3 has a significantly

higher water consumption compared to household h1. Household

h1 can be regarded as a nearest neighbor of household h3.

The corresponding differences in consumption can be used

as a basis for generating corresponding explanations (Arsene

et al., 2023). Depending on the water device specific differences,

recommendations can propose actions such as taking shorter

showers, using lower-flow shower-heads, and turning off taps

during tooth-brushing (Arsene et al., 2023).

3.7. A�ordable and clean energy

The major related goal is the provision of affordable, reliable,

sustainable, and modern energy for all. Recommender systems can

help in the establishment of related energy provision infrastructures

such as wind energy systems with layout planning (Sultana

et al., 2022) and related performance optimizations (Vaghasiya

et al., 2017; Pinciroli et al., 2022). Achieving the goal of

supporting affordable and clean energy also requires the support

of public campaigns that indicate in the form of explanations

and argumentations which behavior patterns can help to reduce

individual energy consumption which is a major goal of assuring

affordable and clean energy (Starke et al., 2021). A similar scenario

has already been discussed within the scope of the goal of

good health and wellbeing, i.e., a recommender system can be

applied to personalize related messages. Message personalization

requires the availability of basic user data such as type of home

(e.g., apartment vs. own house), number of family members,

and further information regarding personal energy consumption

patterns (Eirinaki et al., 2022) and also knowledge about persuasive

technologies (Adaji and Adisa, 2022) and effective user interfaces

(Starke et al., 2017) to achieve sustainable behavior.

On the level of individual households, energy efficiency can

be achieved on the basis of household-specific energy breakdowns

(Batra et al., 2017; Himeur et al., 2021). In this context,

recommendation techniques of collaborative filtering and matrix

factorization can help to predict the energy consumption of

households who did not perform a breakdown up to now,

for example, for reasons of related costs (Batra et al., 2017).

Household-specific energy consumption can also be triggered

on the basis of comparative and community-based explanations

(Petkov et al., 2011) where the energy saving performance of

individual households can be compared to each other indicating

personal performances compared to other households. Norm-

based comparisons are an example thereof: the majority of similar

households show a better energy saving compared to your current

savings data. Furthermore, explanations can refer to energy

consumption in the past (self-comparison feedback) and indicate

improvement or deterioration.

3.8. Decent work and economic growth

The underlying goal is to promote economic growth, full

and productive employment, and decent work for all. Nowadays,

recommender systems can be regarded as a core technology

helping to further increase the business value of offered products

and services (Jannach and Jugovac, 2019). Examples of related

measurements are click-through rates and sales/revenue. However,

recommender systems supporting sustainability development goals

have a different focus. For example, the impact of recommender

systems on increasing the quality of education can be measured

directly in terms of increased knowledge levels of different social

groups. Furthermore, the impact of recommender systems in the

context of clean energy and energy savings can be measured, for

example, in terms of reduced household-wise energy consumption.

Consequently, for achieving sustainability goals, evaluation metrics

should be more customer-focused and thus also consequence-based

compared to metrics in standard business scenarios.

Recommender systems can also help to improve the quality

of work and sustainable growth in terms of supporting different

kinds of open innovation processes. Achieving sustainability goals

is a central agenda of public administrations and finding relevant

acceptable solutions for achieving these goals has to be performed

in terms of a participatory innovation and design process (Felfernig

et al., 2004; Brocco and Groh, 2009; Smith and Iversen, 2018;

Shadowen et al., 2020). In this context, recommender systems can

be applied to support idea generation processes, for example, by

recommending ideas to community members interested in similar

topics (Haiba et al., 2017).

Recommender systems are an established technology

in different people to people (P2P) recommendation
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scenarios—examples thereof are recommending new friends

in social networks, recommending business partnerships, and

recommending jobs (Gutiérrez et al., 2019; Koprinska and Yacef,

2022). Finding the right job is crucial for a further personal

development and a productive employment. In these scenarios,

recommender systems support a matchmaking functionality by

“connecting” job offers with interested employees. Often, such

scenarios are based on content-based recommendation where job

descriptions are matched with the interest and qualification profiles

of potential candidates. An important issue in these scenarios is

the aspect of fairness with regard to both, institutions offering a job

and corresponding candidates. From the institution point of view,

fairness should be guaranteed with respect to other institutions

offering similar jobs, i.e., amount and expertise of contacted

candidates should be nearly the same. From the candidates point

of view, no overloading should take place, i.e., a specific job

offer should not be shared with all potential candidates. Finally,

a stable or increasing number of new established enterprizes

can be regarded as a major indicator of economic growth

(Luef et al., 2020)—in this context, recommender systems can

be applied to support investors in better identifying the most

relevant investments.

3.9. Industry, innovation, and infrastructure

The underlying goal is to promote innovation, sustainable

industrialization, and resilient infrastructures. Industrial

applications of recommender systems are many-fold and range

from the recommendation of movies (Gomez-Uribe and Hunt,

2016), the recommendation of books (Smith and Linden, 2017),

recommendations in the dating business (Tomita et al., 2022), to

the recommendation of airline offers (Dadoun et al., 2021). Beyond

acting as a support of core business processes (e.g., selling books),

recommender systems can also act in a supportive role which is

often the case with sustainability topics.

Recommender systems can be applied as a knowledge transfer

medium for different industrial segments to indicate possibilities

in terms of process improvements and the inclusion of sustainable

materials into production processes (Wiezorek and Christensen,

2021). Identifying sustainability properties of products is often

not an easy task—examples of such properties are environmental

impact, animal welfare, and customer benefits (Tomkins et al.,

2018). Due to a lack of easily accessible sustainability information,

customers do not always behave as intended, i.e., although

interested in sustainability, they take sub-optimal decisions due to

the lack of related information. Tomkins et al. (2018) introduce a

hybrid recommender system where the item-related sustainability

classification is based on probabilistic soft logic.

Fostering innovation can be supported in various forms—

examples thereof are innovation processes where recommender

systems provide support in the configuration of innovation

teams, i.e., who should work together to achieve specific

innovation goals (Brocco and Groh, 2009) and the process of

idea generation (Haiba et al., 2017). An important aspect in

software development is to overcome the barriers of taking into

account sustainability aspects in software engineering (Roher and

Richardson, 2013). Also in this context, recommender systems can

be applied to support project stakeholders with recommendations

that are determined depending on the underlying application

domain. Similar applications exist in software development, where

intelligent source code analysis can help to identify software

elements to be adapted, for example, to achieve more efficient

runtimes and corresponding CPU usage (Muralidhar et al., 2022).

3.10. Reduced inequalities

Achieving this objective (reduce inequality within and among

countries) requires actions such as promoting economic inclusion,

direct investments, and fostering mobility and migration to

bridge divides.

On the macro-level, recommender systems can help to figure

out new potentials overlooked by countries, that can trigger future

economic welfare due to strategic future advantages (Liao et al.,

2018). In this line of research, recommender systems can also

help to establish new study programs of relevance helping to

promote relevant know-how for implementing specific industries.

As discussed in Che (2020), recommender systems can be applied in

the context of developing export diversification strategies resulting

in recommended industry/product segments which should be

expanded or established in specific countries. Having identified

such segments, recommender systems can also be applied to

identify a corresponding educational focus indicating which study

programs should be emphasized or established in a specific country

or a specific region (Tavakoli et al., 2022).

Specifically in the context of fostering mobility and migration,

the task of country recommendation becomes increasingly

relevant. Majjodi et al. (2020) motivate the application of country

recommender systems since beginning a new life in a different

country is for various reasons a high-involvement and often

risky decision. The basic underlying idea is to support country

recommendation on the basis of collaborative filtering where

preferences of existing emigrants are used to infer relevant

countries for potential emigrants. Such a scenario can typically not

be supported solely on the basis of collaborative filtering (which

relies on medium- and long-term preferences) but must include

a knowledge-based recommendation component that takes into

account short-term circumstances, for example, changing political

situations, which do not allow a corresponding recommendation.

This is a typical example of hybrid recommendation, where synergy

effects of different recommenders can be combined in a reasonable

fashion (Burke, 2002).

Fairness aspects play a crucial role in different job

recommendation scenarios (Li et al., 2023). In such scenarios,

job candidates should receive recommendations with a very

good fit but at the same time companies offering jobs should

be treated equally in terms of amount and quality of proposed

candidates. A related simplified recommendation scenario is

depicted in Table 13. Table 13 shows individual job candidate/job

compatibilities determined, for example, on the basis of content-

based recommendation which provides a similarity between a job
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TABLE 13 Simplified example of taking into account fairness aspects in

job recommendation scenarios.

Candidate job1 job2 job3 job4 job5 job6

c1 9 9 8 1 8 1

c2 9 1 7 9 2 7

c3 2 1 6 8 7 2

TABLE 14 Recommendations of candidate/job assignments where 1 (in

brackets) indicates that the corresponding assignment is part of the

recommendation REC.

Candidate job1 job2 job3 job4 job5 job6

c1 9 (1) 9 (1) 8 (1) 1 (0) 8 (1) 1 (0)

c2 9 (1) 1 (0) 7 (0) 9 (1) 2 (0) 7 (1)

c3 2 (0) 1 (0) 6 (0) 8 (1) 7 (0) 2 (0)

description and the application material provided by the candidate

(in our example, on a scale [1..10]—the higher the better).

In this setting, different fairness aspects can be taken into

account. For example, each candidate should have at least one job

offering (see Formula 4).

∀c ∈ candidates : #jobs(c) > 0 (4)

Furthermore, there should be at least one candidate for each job

offering (see Formula 5).

∀j ∈ jobs : #candidates(j) > 0 (5)

Finally, the recommendation quality should be maximized

where REC denotes the set of all proposed job/candidate

assignments (rec ∈ REC) and maxrating is the maximum (best)

possible candidate/job rating. In this context, the optimization

goal is to minimize the average distance between candidate/job

compatibility evaluations and the maximum possible rating (see

Formula 6).

MIN ←
6rec∈REC maxrating − rating(rec)

|REC|
(6)

A recommendation REC for candidate/job assignments on the

basis of the example scenario shown in Table 13 is presented in

Table 14.

In this example, REC consists of 8 proposed assignments where

candidate c1 is recommended for four jobs (job1, job2, job3, job5),

c2 is recommended for three jobs (job1, job4, job6), and c1 for one

job (job4).

Finally, fairness considerations are also relevant in the

context of individuals with disabilities. Related recommendation

approaches support content recommendation (Quisi-Peralta et al.,

2018; Apostolidis et al., 2022), recommendation for accessibility

and mobility (Cardoso et al., 2015; Brodeala, 2020; Tsai et al.,

2022), activity recommendation (Altulyan et al., 2019), and the

recommendation of points of interest (Mauro et al., 2022).

3.11. Sustainable cities and communities

The related goal is to make cities and human settlements

inclusive, safe, resilient, and sustainable. City planners, decision

makers, and citizens need to be supported in order to achieve the

different goals of sustainable cities and communities. For example,

sustainable mobility provides modern commuting systems and

facilities on the basis of green infrastructures. Furthermore, in

order to assure a smart environment, natural resources need to

be preserved.

Recommender systems can support sustainable smart cities on

the basis of supporting strategic decision making. Depending on

the context of a specific city, different actions need to be taken

in order to be able to achieve related sustainable development

goals (Bokolo, 2021). Helping public stakeholders to achieve related

sustainability goals can be supported, for example, on the basis

of case-based recommender systems which follow the idea of

supporting the identification of similar cases (cities) and on the

basis of related measures already completed in similar cities to

recommend sustainability-fostering activities for the current city

(Banerjee, 2023).

In such contexts, recommender systems can support also

individuals (e.g., citizens and tourists) in the completion of their

tasks and the achievement of their goals. For example, sustainable

tourism recommender systems are able to propose relevant points

of interest (POI) whilst taking into account aspects such as

negative environmental impacts, local communities, and cultural

heritage (Khan et al., 2021; Banerjee, 2023; Merinov, 2023). Related

interventions are needed that assure fairness among multiple

stakeholders such as tourists, tourism organizations, local citizens,

and environmental aspects such as water quality, air quality, and

wildlife. Calculating recommendations in such scenarios requires

the integration of optimization methods supporting, for example,

the optimization of round trips of individual travel groups, resource

balancing in the sense that not too many tourists visit specific

sightseeing destinations at the same time (triggering issues in

terms of disturbances, environmental pollution, and the scaring of

animals; Sihotang et al., 2021; Merinov, 2023). In such contexts,

explanations can help to assure recommendation understandability

and to sensitize stakeholders with regard to sustainability aspects

(Banerjee, 2023).

3.12. Responsible consumption and
production

The underlying goal is to ensure sustainable consumption and

production patterns. A challenge in this context is to find ways to

achieve environment sustainability and at the same time to trigger

economic growth and welfare by making these two factors much

more independent, i.e., to “achieve more with less.”

Sustainable production is related to the goal of achieving

industrial symbioses where cooperations between companies are

intensified, for example, with the goal to minimize industrial waste

streams and share related knowledge (van Capelleveen et al., 2018).

In such contexts, recommender systems can support individual

companies by the recommendation of opportunities in waste
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marketplaces which in the following could lead to intensified

cooperations between companies. In such scenarios, recommender

systems must be built in a knowledge-based fashion which helps

to assure that the needed knowledge about compatibilities of waste

products is available. Such basic recommendations can be enhanced

by future recommender systems proposing different types of

cooperations based on deep knowledge about the underlying waste

chains. We regard this scenario as part of the macro level (in

the case that public agencies deliver related recommendations for

companies) and on the micro-level, if companies themselves are

registered in a public marketplace.

Achieving sustainability goals in the fashion industry (Wu et al.,

2022) requires, for example, to lower the number of returned

deliveries and to increase a customers willingness to accept higher

prices for higher-quality items. Such goals can be achieved, for

example, by providing means to create bundles of items (Li et al.,

2020; Wiezorek and Christensen, 2021) which fit together relieving

customers from the burden of performing this task on their

own (Zielnicki, 2019). In this context, persuasive explanations are

needed that help to better motivate customers to choose more

sustainable options (Knowles et al., 2014). An important aspect is

also to assure solution minimality, i.e., to guarantee that product

bundles and complex configurations do not entail unnecessary

components (Vidal-Silva et al., 2021).

3.13. Climate action

The major related challenge is to perform actions with the

goal to combat climate change and direct or indirect impacts

thereof. An important aspect in combating climate change is to

empower new types of energy production systems, for example,

in terms of prosumer networks where private households can act

as solar energy producers and consumers at the same time (Guzzi

and Chiodo, 2022). Before establishing individual cooperations,

it is important to figure out and recommend homogeneous

prosumer clusters which then maximize the consumption of

the cluster-produced energy and—at the same time—minimize

the consumption of external energy sources. Recommendations

in this context can propose specific clusters in a region of

consumers (Guzzi and Chiodo, 2022). In related energy saving

scenarios, persuasive explanations of recommendations play a

central role since households should be encouraged to reduce

energy consumption in a sustainable fashion. Starke et al. (2021)

show how such explanations can be designed on the basis of

the concepts of framing (Tversky and Kahneman, 1985) where

those attributes of a decision alternative are highlighted in a

recommender user interface which are related to high kWh savings.

One simple possibility of “implementing” framing on the user

interface level is to sort recommended items on specific attributes

making those items more attractive that score high with regard to

this attribute. For example, alternative energy saving measures can

be sorted with regard to the amount of kWh savings (Starke et al.,

2021). These insights regarding the provision of explanations can

also be applied in public services provision when informing citizens

about potential energy saving measures. Besides the mentioned

energy saving scenarios, such persuasive messaging can also be

applied in the context of route recommendation scenarios with the

goal to encourage users to choose environmental-friendly routes

thus contributing to reduce pollution due to carbon emissions

(Bothos et al., 2016).

On the level of individual households, recommender systems

can be applied to assist residents in optimizing energy savings.

Supporting such optimizations, is a central capability of constraint-

based recommender systems (Felfernig and Burke, 2008) which

allow the inclusion of optimization criteria to determine relevant

recommendation candidates (Murphy et al., 2015). If, for

example, power suppliers, support time-dependent flexible pricing

conditions, the operation of electric equipment should be

optimized on the basis of the pricing models. Furthermore, such

constraint-based applications can take into account corresponding

regional weather forecasts and conditions to also take into

account potential consumptions of energy produced by the

household itself thus supporting real-time recommendations and

corresponding actions in terms of activating and deactivating a

specific heating equipment (Dahihande et al., 2020). An important

aspect is also that the recommender has knowledge about the

current in-building location of residents. Using such knowledge,

can help to further decrease power consumption in buildings

by activating/deactivating electronic equipment in an intelligent

fashion (Wei et al., 2018).

3.14. Life below water

The underlying goal is to enable a sustainable use of oceans,

seas, and marine resources. The application of artificial intelligence

techniques in related fields is progressing, however, there is

potential for further machine learning and recommender systems

applications (Xu et al., 2022).

Water quality and pollution assessment and the development

of countermeasures becomes an increasingly relevant issue. Due to

limited resources in terms of possible data collections and available

datasets, machine learning models need to be developed that serve

as a basis for pollution prediction but also the determination of

recommendations of relevant counter-measures (Xu et al., 2022).

In the context of illegal fishing, recommender systems can help

to propose effective sequential defender strategies that help to

counteract illegal fishing (Fang et al., 2015).

A relevant problem directly related to water quality and further

environmental conditions is the provision of recommendations

for aquacultures (e.g., fish farming), for example, in terms of

species suitable for the specific conditions and also in terms of

nutrients that should be provided in such contexts (Praba et al.,

2023). Related recommender applications can also be applied

for further tasks, for example, identification and counteracting

fish diseases, remote maintenance of offshore infrastructures, and

recommending nutrition plans depending a.o. on estimated weight

and size of fishes.

3.15. Life on land

The overall underlying goal is a sustainable use of terrestrial

ecosystems, for example, in terms of sustainability in forest
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management, counteracting desertification, and halting of

biodiversity loss.

It is important to understand and optimally decide on

appropriate crops to be cultivated. Crop recommender systems

recommend crops on the basis of land quality and mineral

requirements whereas pesticide recommender systems propose a

collection of pesticides in order to protect specific crops from

diseases (Patel and Patel, 2020; Usman et al., 2021). In the line of

sustainability requirements, such systems have to take into account

impacts of potentially used treatments (e.g., pesticides), i.e., not

solely focusing on maximizing productivity but trying to keep soil

characteristics are extremely important for maintaining fertility

(Usman et al., 2021). In a broader sense, recommender systems

can be applied to support different kinds of precision farming

(Ronzhin et al., 2022; Thilakarathne et al., 2022; Wakchaure et al.,

2023).

Furthermore, recommender systems can provide suggestions

on how to counteract wildlife poaching which is a serious

extinction threat to many animal species and related ecosystems

(Nguyen et al., 2016). Based on such tools, animal protectors

are enabled to analyze and predict poaching activities and

to recommend countermeasures on the basis of behavioral

models learning from poaching data (Yang et al., 2014;

Nguyen et al., 2016). In this context, resource balancing

plays an important role since personal resources used for

observation activities are extremely limited (Yang et al.,

2014).

3.16. Peace, justice, and strong institutions

The underlying goal is to promote peaceful societies supporting

justice for all on the basis of corresponding effective, accountable,

and inclusive institutions. Law enforcement agencies are aware

of the fact that the analysis of networks of co-offenders

who committed crimes together is highly relevant in crime

investigation (Tayebi et al., 2011). Manually performing such

tasks can be quite inefficient which make it an application

scenario for recommender systems: suspects are compared

with known co-offending networks and the most relevant

ones are shown (recommended) to the law enforcement

agency representatives.

In the context of trials, recommender systems can support legal

practitioners in the identification of advantageous arguments for

an ongoing case (Dhanani et al., 2021). In practice, documents

and further material related to the current case are compared

with already “closed” cases on the basis of different text-based

similarity metrics. The identified most similar documents are

then used as a basis for more detailed analysis steps conducted

with the goal of identifying relevant arguments better helping

to win acquittal for an accused person (Mandal et al., 2017;

Dhanani et al., 2021). On the negative side, such content-based

recommenders are also applied by different social media and

news platforms with the danger of creating so-called “echo-

chambers” of misinformation (Sallami et al., 2023)—this is

also related to the general requirement of considering and

minimizing harm in recommenders (Ekstrand and Ekstrand,

2016).

3.17. Partnerships for the goals

The goal is to identify global partnerships bringing together

various institutions such as governments, private sector, and others

that help to better achieve the discussed goals. A specific task is to

assure an increasing support for developing countries to assure

an equitable progress for all and also strengthen the path toward

sustainability. Identifying and establishing such cooperations can

also be supported by recommender systems, for example, people-

2-people recommender systems can support the identification of

business partners and research cooperations (Hu and Ma, 2021;

Koprinska and Yacef, 2022).

4. Open research issues

4.1. Evaluation metrics for sustainability

There exists a plethora of evaluation metrics for recommender

systems (Zangerle and Bauer, 2022) ranging from (1) data-

driven approaches to evaluate the prediction/classification quality,

(2) experimental settings evaluating prototype systems with

alternative variants of user interfaces and algorithmic approaches,

and (3) field studies in real-world settings, for example, on

the basis of A/B testing. However, existing evaluation metrics

do not focus on specific sustainability aspects, for example,

achievements in terms of reduced power consumption, increased

share of sustainable items in a user’s purchase history, and

reduced global CO2 footprint—a specific related aspect is to

take sustainability aspects into account when selecting and/or

implementing recommendation algorithms (Lannelongue et al.,

2023; Spillo et al., 2023).

4.2. Nudging for sustainability

The way decision alternatives are presented to users has an

impact on the final decisions taken by users. In this context, nudging

(Thaler and Sunstein, 2021) can be defined as any aspect of a

choice situation that alters the behavior of a user in a predicable

way without forbidding any options. Providing a basis for better

choice on the basis of decision support is an important goal to be

taken into account (Kroese et al., 2015). Related research already

indicates the potential of nudges in various recommender systems

supporting sustainability goals (Bothos et al., 2015; Lehner et al.,

2016; Karlsen and Andersen, 2019; Majjodi et al., 2022). Successful

nudges are often based on decision biases, i.e., decision practices

(heuristics) used by humans to often lead to suboptimal decision

outcomes. An overview of such decision biases and their role in

recommender systems is discussed in Mandl et al. (2011), Chen

et al. (2013), Lex et al. (2021), and Tran et al. (2021).

4.3. Contextual explanations

Given an infrastructure of intelligent data collection, energy

consumption information is directly available and can be used

for generating corresponding recommendations. For example, in
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smart homes the activation of a dishwasher and a washing machine

could be delayed due to the fact that a parallel car battery recharging

would lead to an additional consumption of external energy

resources. In travel scenarios, a recommender system can detect

alternative (more sustainable) routes not requiring a car rental. In

such scenarios, explanations play an important role and must be

contextualized and personalized to attain the maximum impact.

Explanation generation for achieving sustainability goals can be

regarded as a highly relevant research issue (Starke et al., 2021).

4.4. Consequence-based explanations

In the context of recommender systems, explanations can be

used to support different goals such as trust and persuasiveness

(in terms of increasing the probability that a user will purchase

an item; Tintarev and Masthoff, 2012). However, with a few

exceptions, existing explanation approaches do not take into

account the consequences of “accepting” a recommendation.

For example, purchasing a rather expensive BMW has specific

consequences on the economic situation of a household—having

an expensive car could have an impact on the affordability of

holidays or the education quality of children. Specifically in

the context of achieving sustainability goals, there is a need to

analyze alternatives in terms of the corresponding consequences.

For example, explanations can provide information regarding the

consequences of not investing into new heating equipment [in

terms of CO2 footprint issues as well as in terms of additional costs

associated with the old (still installed) heating equipment].

4.5. Constraint-based recommendation for
sustainability

Constraint-based approaches are applied in various contexts,

for example, the optimization of a households energy consumption

strategy (Murphy et al., 2015). In the line of the idea of simulating

the consequences of financial decisions (Fano and Kurth, 2003),

constraint-based recommenders could also be combined with

corresponding simulation components that help to visualize the

impact of different decisions. For example, sticking with the old

heating equipment could have an impact on the overall related

costs in the long run. Furthermore, consequences exist on different

levels, for example, related simulations could also represent “what-

if ” scenarios, i.e., what happens to the global warming if a majority

of people are not thinking about reducing their CO2 footprint.

5. Conclusions

Sustainability development goals (SDGs) as defined by the

United Nations are a call for action to planet protection, ending

poverty, and ensuring peace and prosperity. In this article, we

have provided an overview of SDGs and related applications

of recommender systems. These systems can be regarded as a

core technology of different decision support scenarios and thus

play a major role in achieving the mentioned SDGs. In order to

assure understandability, we have provided corresponding working

examples that show how recommender systems can be applied in

different application contexts. Furthermore, with the goal to foster

further related research, we have provided a list of research issues

in the context of developing recommender systems supporting

sustainability goals.
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